

	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963
_		05/12/2022
Form:	Number and Date of Revision or Modification	
Course Syllabus	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	09

1.	Course Title	Mathematical analysis 2					
2.	Course Number	0301311					
2	Credit Hours (Theory, Practical)	3+0					
5.	Contact Hours (Theory, Practical)	3					
4.	Prerequisites/ Corequisites 0301311						
5.	Program Title B.Sc.						
6.	Program Code						
7.	School/ Center	Science					
8.	Department	Mathematics					
9.	Course Level	Bsc					
10.	Year of Study and Semester (s)	Third or fourth, all semesters					
11	Other Department(s) Involved in						
	Teaching the Course						
12.	Main Learning Language	English					
13.	Learning Types	■Face to face learning □Blended □Fully online					
14.	Online Platforms(s)	□Moodle ■Microsoft Teams					
15.	Issuing Date	11-11-2024					
16.	Revision Date	11-11-2024					

17. Course Coordinator:

Name: Khalid Bdarneh	Contact hours:(S,T,W) 10:30-11:30
Office number: 311	Phone number:(N/A)
Email: K.Bdarneh@ju.edu.jo	

18. Other Instructors:

Name:	
Office number:	
Phone number:	
Email:	
Contact hours:	
Name:	
Office number:	
Phone number:	
Email:	
Contact hours:	

19. Course Description:

As stated in the approved study plan. Liminf and limsup of sequences of real numbers: The definition using limit points. Basic properties of liminf and limsup. Series of real numbers: the definition and the algebraic properties. Convergence: the definition and the basic properties. Absolute and conditional convergence. Tests of absolute convergence (the general form: using liminf, and limsup.) (Ratio, nth root and comparison tests) Rearrangements of series. Abel test. Dirichlet test. Cesaro summability. Infinite product and its relation to infinite series. Sequences of functions: the definition and examples. Pointwise convergence. Uniform convergence. Uniform convergence and continuity on [a,b]. Uniform convergence of sequences of derivatives. Dini's Theorem. Uniform convergence and interchange limit theorems. Series of functions: definition and basic properties. Pointwise and uniform convergence of series of functions. Weierstrass M-test. Uniformly convergent series of continuous functions. Uniformly convergent series of integrable functions. Interchange of summation and integration. The space C[a,b]: the definition, metric and algebraic properties. The Weierstrass approximation theorem. Improper integral: Kinds of improper integral. Tests of convergence of improper integrals. Examples of functions represented by improper integral. (Gamma function, Beta function, Laplace transform)

الجامعة الاردنية

20. Program Student Outcomes (SO's):

(To be used in designing the matrix linking the intended learning outcomes of the course with the intended

learning outcomes of the program)

7. Utilize research methods, critical and creative thinking skills to assess and analyze

information) to solve problems properly, then draw valid reasoning and logical

conclusions leading to true consequences.

21. Course Intended Learning Outcomes (CLO's):

(Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

- **1.** Understand the definition of the limit of real sequences and series and their properties. Understand the definition of limit superior and limit inferior of real sequences
- **2.** Understand the concept of alternating series, conditional convergent, absolute convergent and rearrangement of series.
- **3.** Understand the definition of point-wise convergent, uniform convergent of a sequence of functions.
- **4.** Understand some consequences and relation between uniform convergence of a sequence and series of functions continuity, differentiation and Integration.
- **5.** Understand the proof and applications of three famous theorems, Weierstrass approximation theorem, Picard's existence theorem, and the Arzela theorem on equicontinuous families of functions.

Course	The learning levels to be achieved										
CLOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating					
1											
2											
3											
4											
5											

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program SO's	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	SO (7)	SO (8)
Course CLO's	-							
CLO (1)								
CLO (2)								
CLO (3)								
CLO (4)								
CLO (5)								

23. Topic Outline and Schedule:

Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types Face to Face (FF) Blended (BL) Fully Online (FO)	Platform Used	Synchronous (S) Asynchronous (A)	Evaluation Methods	Learning Resources
	1.1	Revision		FF	Teams	S		Text Book
1	1.2	Liminf and limsup of sequences of real numbers	1	FF	Teams	S		Text Book
	1.3	Basic properties of liminf and limsup.	1	FF	Teams	S		Text Book
	2.1	Cesaro Summability.	1	FF	Teams	S		Text Book
2	2.2	Series of real numbers, the definition and the algebraic properties	1,2	FF	Teams	S		Text Book
	2.3	Convergence, the definition and the basic properties.	1,2	FF	Teams	S		Text Book

	[[[
	2.4	Absolute and	1.2		T	c	Taut Da ali
	3.1	conditional	1,2	FF	Teams	5	Text Book
		convergence (the					
3	2.2	liminf and limsun)	1,2		Tooms	c	Toyt Dook
	5.2	(Patio ath root		FF	Teams	3	TEXLBOOK
		and comparison					
		tests)					
		Tests of absolute	12				
	3.3	convergence	1,2	FF	Teams	S	Text Book
		Tests of absolute	1.2				
	4.1	convergence	_/_	FF	Teams	S	Text Book
_		Rearrangemen ts	1,2		_	_	
4	4.2	of series.		FF	Teams	S	Text Book
	4.2	Aboltost	1,2		T	c c	Taut Da ali
	4.3	Abel test.		FF	Teams	5	Text Book
	Е 1	Dirichlat tast	1,2		Teams	S	Toyt Book
	5.1	Differilet test		ГГ			TEXT DOOK
		Infinite product	1 2				
	5.2	and its relation to	1,2	FF	Teams	S	Text Book
5	5.3	infinite series					
		Sequences of					
		functions, the	1,2	FF	Teams	S S	Text Book
		definition and					
		Pointwise					
	6.1	convergence	3	FF	Teams	S	Text Book
		Uniform					
6	6.2		3	FF	Teams	S	Text Book
Ŭ		Uniform					
	6.3	convergence and	3	FF	Teams	S	Text Book
		continuity on [a,b.]				-	
		Uniform					
	7.4	convergence and	2		Teeve	c	Taut David
	7.1	integrability on	3	FF	Teams	5	Text Book
		[a,b.].					
7		Uniform					
	7 2	convergence of	2	FF	Teams	s	Text Book
	,.2	sequences of	5		i cuitis	5	ICAL DOOK
		derivatives					
	7.3	Midterm Exam	1,2	FF	Teams	S	Text Book
8	8.1	Dini's Theorem	3	FF	Teams	S	Text Book

			-				
	8.2	Uniform convergence and interchange limit theorems	3	FF	Teams	S	Text Book
	8.3	Series of functions, the definition and basic properties	3	FF	Teams	S	Text Book
	9.1	Pointwise convergence of series of functions.	3	FF	Teams	S	Text Book
9	9.2	Uniformly convergence	3	FF	Teams	S	Text Book
	9.3	Weierstrass M- test.	3	FF	Teams	S	Text Book
	10.1	Uniformly convergent series of continuous functions	3,4	FF	Teams	S	Text Book
10	10.2	Uniformly convergent series of integrable functions	3,4	FF	Teams	S	Text Book
	10.3	More Examples	3,4	FF	Teams	S	Text Book
	11.1	Interchange of summation and integration	3,4	FF	Teams	S	Text Book
11	11.2	Interchange of summation and integration	3,4	FF	Teams	S	Text Book
	11.3	The space C[a,b], the definition, metric	3,4	FF	Teams	S	Text Book
	12.1	Second Exam	2,3,4	FF	Teams	S	Text Book
12	12.2	The space C[a,b], the algebraic properties	5	FF	Teams	S	Text Book
	12.3	The Weierstrass approximation theorem	5	FF	Teams	S	Text Book
13	13.1	Arzela theorem on equicontinuous families of functions	5	FF	Teams	S	Text Book

	1				1		1	
	13.2	Picards existence	5	FF	Teams	S		Text Book
		theorem						
	13.3	Improper integral,	5	FF	Teams	S		Text Book
	1010	the definition			reams			Text Book
	1/1 1	Kinds of improper	5	66	Teams	c		Text Book
	14.1	integral.	J	11	Teams	3		TEXT BOOK
14		Tests of						
14	14.2	convergence of	5	FF	Teams	S		Text Book
		improper integrals.						
	14.3	More Examples	5	FF	Teams	S		Text Book
		Examples of						
		functions						
	15.1	represented by						
		improper integral.	5	FF	Teams	S		Text Book
		(Gamma unction,						
		Beta function,						
		Laplace transform)						
15		Examples of						
_		functions						
		represented by						
	15.2	improper integral.	5	FF	Teams	S		Text Book
		(Gamma function.				-		
		Beta function						
		Laplace transform)						
	15.3	Revision	1.2.3.4.5	FF	Teams	S		Text Book
			12345			-		
16			12,3,1,3				Final Exam	
		1		1	1	1	1	1

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment

methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLO/s Linked to the Evaluation activity	Period (Week)	Platform
Midterm exam	30		1,2,	8	On campus
Second exam	20		3,4	11	On campus
Final	50		1,2,3,4,5	Final exams period	On campus

25. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific

software/platform...etc.):

-Data show, Microsoft Teams account.

26.Course Policies:

According to university regulations, attendance is mandatory. If a student is unable to attend a class, then he/she should contact the instructor. If a student misses more than 10% of the classes without excuse, then he/she will be assigned a falling grade in class. In cases of extreme emergency or serious illness, the student will be allowed to make up the missed exams. Times and dates for makeup exams will be assigned later. There are severe sanctions for cheating, plagiarizing and any other form of dishonesty. The university regulations on cheating will be applied to any student who cheats in exams or on any homework.

- A. Attendance policies:
- B. Absences from exams and submitting assignments on time:
- C. Health and safety procedures:
- D. Honesty policy regarding cheating, plagiarism, misbehavior:
- E. Grading policy:
- **F.** Available university services that support achievement in the course:

27. References:

A- Required book(s), assigned reading and audio-visuals:

Methods of real analysis, Richard R. Goldberg, John Wiley and sons, New York, 1984.

- B- Recommended books, materials, and media:
 - 1- Principles of mathematical analysis W. Rudin.
 - 2- Mathematical analysis, Apostol

28. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Dr.Khalid Bdarneh		11-11-2024
Name of the Head of Quality Assurance Committee/ Department:	Signature:	Date:
Prof. Manal Ghanem		
Name of the Head of Department:	Signature:	Date:
Prof. Baha Alzalg.		
Name of the Head of Quality Assurance Committee/ School of Science:	Signature:	Date:
Prof. Emad A. Abuosba		
Name of the Dean or the Director:	Signature:	Date:
Prof. Mahmoud I. Jaghoub		